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Abstract. High power tests are currently being conducted on RF-driven dielectric-loaded 
accelerating (DLA) structures to determine their viability as traveling-wave accelerators.  These 
tests are a collaborative effort between Argonne National Laboratory (ANL) and the Naval 
Research Laboratory (NRL).  In a previous high power test, single-surface multipactor was 
reported to be capable of absorbing more than half of the RF power incident on an alumina-
based DLA structure.  In this paper, we report on the most recent set of high power tests that are 
attempting to further understand multipactor and eventually suppress it.  Several methods were 
employed to suppress multipactor including: the use of a magnetic field; a TiN surface coating; 
and a different dielectric material (Magnesium-Calcium-Titanate based).  The effectiveness of 
these three methods are presented and discussed in the paper. 

INTRODUCTION 

Dielectric-based accelerating structures are currently being actively pursued as 
high-gradient alternatives to conventional iris-loaded copper structures.  In particular, 
the cylindrical, RF-driven, dielectric-loaded accelerator (DLA), in which a uniform 
dielectric-lined metal tube replaces the metal disk-loaded structure [1, 2] offers a 
simpler geometry with acceleration efficiency comparable to metallic structures and 
the potential to operate at higher acceleration gradients. The proposed use of 
dielectric-based structures for acceleration dates back to the 1950s [3], but 
experimental testing to examine if these devices are capable of high-power operation 
has only recently begun [4, 5]. For the last several years, a program has been under 
way at Argonne National Laboratory, in collaboration with the Naval Research 
Laboratory (NRL), to develop cylindrical, RF-driven, dielectric-loaded accelerating 
(DLA) structures, with the ultimate goal of demonstrating a compact, high-gradient 
linear accelerator based on this technology [6]. 

Structure development takes place at ANL and includes all the low-power tasks 
ranging from design and fabrication to network analyzer bench-top measurements and 
vacuum testing.  In the first stage of the program, several structures designs were 
tested (at low-power) at ANL before the first high power test was carried out.  During 
these tests [1] several issues were addressed including (1) development of an efficient  
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FIGURE 1.  Cross section of the cylindrical, alumina DLA structure. (a=5 mm, b=7.185 mm) 
 

RF coupling scheme; (2) demonstration that gas absorption didn’t prevent good 
operating vacuum; and (3) demonstration that the RF properties of the structure were 
not overly sensitive to temperature fluctuations. 

Once a structure has been successfully developed at ANL, it is transported to 
NRL’s 11.424 GHz Magnicon Facility for high power testing.  The purpose of the 
high power test is ultimately to demonstrate high-gradient operation of the DLA 
structure and to discover and correct any phenomena that prevent such operation.  The 
first series of high power tests carried out at NRL [7] were conducted on an MgxCa1-

xTiO3-based (MCT-based) DLA structure and revealed arcing in the input coupler at 
an incident power ( incP ) level of approximately 0.5 MW, similar to what was observed 
by Fang et al. [5].  Due to the failure of the input coupler, the DLA structure was 
subsequently redesigned [8] and, a second series of high power tests were carried out 
on the new DLA structure. This structure was successfully high power tested [9] to 

incP = 5 MW without any signs of RF breakdown.  However, a new problem was 
observed at this higher power level, anomalous absorption of the incident power which 
was later attributed to multipactor. 

Multipactor is an electron multiplication process that can take place on surfaces 
exposed to RF fields in vacuum. Multiplication occurs when an electron gains energy 
from the RF field, and strikes the surface with an impact energy between the first 
cross-over energy ( 1e , typically in the range of 10-100 eV) and the second cross-over 
energy ( 2e , typically in the range of 1-10 keV). Multipactor can lead to a variety of 
deleterious effects, but the one that is of greatest concern for the DLA structure is its 
ability to absorb large amount of power from the RF field.  Further details about 
multipactor are not given here, since many references exist on the topic [10-12] 
including a paper recently published by our collaboration [13] that describes the first 
experimental observation of multipactor in a DLA structure along with a model that 
explains the multipactor-induced power absorption.  In the remainder of this paper, we 
will discuss the third series of high power tests which were recently conducted and 
were intended to deepen out understanding of multipactor in DLA structures and the 
methods to suppress it.   

Multipactor effects were studied for two basic types of DLA structures, an alumina-
based and an MCT20-based. Both structures consist of a uniform dielectric-lined 
copper tube in the central region and dielectric-lined tapered transitions at both ends 
used for matching to the all-copper tube. They are also both constant-impedance, 
11.424 GHz, traveling-wave (TW) accelerators operating in the TM01 mode.  The 
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TABLE 1. Parameters for the Alumina and MCT based 11.424 GHz DLA structures. 
Parameter Alumina MCT 

Dielectric Material Al2O3 MgxCa1-xTiO3 
Dielectric Constant 9.5 20 
Inner Radius 5 mm 3mm 
Outer Radius 7.185 mm 4.56mm 
Power needed to support gradient of 1 MV/m  80 kW 27 kW 
Group Velocity 0.134 c 0.057c 

 
alumina DLA structure is shown in Figure 1 and its parameters are shown in Table 1, 
while the MCT structure is described in detail in Reference [14] and its parameters are 
also summarized in Table 1. 

In addition to the high power tests carried out on these two structures, a second 
alumina-based structure was prepared that was identical to the alumina-structure just 
described except that the inner alumina surfaces were coated with a 20-nm thick layer 
of TiN.   This structure is called the coated-alumina structure in order to differentiate it 
from the non-coated structure described above.  All told then there were three separate 
structures whose multipactor effects were studied: the non-coated alumina structure; 
the coated alumina structure; and the non-coated MCT structure. 

EXPERIMENTAL SETUP 

All high-power tests were conducted at the 11.424-GHz Magnicon Facility at the 
Naval Research Laboratory [15].  A detailed description of the experimental 
procedures used during the high power test is given elsewhere in these proceedings [6, 
15] and will not be repeated here. Briefly, power from the magnicon is first coupled 
from rectangular to cylindrical copper waveguide with a 0110 TMTE −  mode converter 
[8] and then into the DLA structure (Fig. 1).  Following bakeout and RF conditioning, 
the incident ( incP ), reflected ( refP ), and transmitted ( trP ) RF powers were measured 
with directional couplers as incP  was raised from low to high values.  Lastly, a 
solenoid surrounded the coated alumina DLA structure, during the high power tests, so 
as to produce an axial magnetic field in the region of the dielectric surface.  This 
produced a magnetic field that was approximately parallel to the surface of the 
dielectric in the central region of the tube and could be varied in strength from 0 to 
about 300 Gauss. 

RESULTS AND DISCUSSION 

Multipactor has been experimentally studied for four different configurations.  
These are: (1) a non-coated alumina DLA structure; (2) coated alumina DLA structure 
with no magnetic field; (3) coated alumina DLA structure with a magnetic field; and 
(4) a non-coated MCT DLA structure.  In this section we compare and contrast these 
four configurations.   
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FIGURE 2. The measured values of the three fractional powers (in percentage) as a function of 
incident power during the high-power test of the DLA Structure.  The decrease in the fraction of 
transmitted power is caused by the increase in the fraction of power absorbed by multipactor. 

The Standard: The Non-coated Alumina DLA structure 

In this section, we briefly summarize the original experiment where multipactor in 
a non-coated, alumina DLA structure was discovered.  This serves two purposes: it 
explains the dominant multipactor effect observed (multipactor-induced power 
absorption) and defines a standard by which the other three cases studied can be 
compared. 

After a short conditioning period of the non-coated, alumina DLA structure, the 
incident power was raised from low power to 5 MW (Ez ≈ 8 MV/m) at an RF pulse 
length of 150 ns FWHM, with no sign of RF breakdown during the conditioning 
process. As can be seen in Figure 2, the fraction of power transmitted through the 
tube, inctr PP , was approximately 75% (which is consistent with network analyzer 
measurements) below ~0.1 MW, but decreased rapidly above that point.  Since there 
was not a corresponding rise in the fraction of reflected power, incref PP , the roll off 
above the knee in the data (near 0.1 MW) was eventually understood to mean that 
some fraction of the incident power was being absorbed by multipactor or, 

0≠incmp PP .  As explained in the reference, this knee occurs at the location of the 
first cross-over energy, 1e . At the highest incident power level, multipactor absorbed 
approximately 50% of the incident power or, %50≈incmp PP . 

TiN Coating 

In this section we compare the results from the high power tests of the alumina 
DLA structure without a coating, “the non-coated structure” and the alumina DLA 
structure with a 20-nm thick TiN coating, “the coated structure.”  The only 
experimentally measured parameter that is discussed in this section is the fraction of 
transmitted power, inctr PP .  We do this since it is the clearest indicator of 
multipactor.  Note that in Figure 3 we plot the normalized fraction of power that is 
transmitted through the waveguide.  The reason we normalize the transmitted power is  
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FIGURE 3. The normalized fraction of transmitted power inctr PP vs. acceleration gradient zE  for 
both the coated (triangles) and non-coated (squares) structures.   A larger fraction of the transmitted 
power is absorbed in the non-coated DLA structure than the TiN-coated DLA structure. 
 
because the value of inctr PP  at low power varies for the different structures due to 
mechanical and assembly variations.  Normalizing inctr PP to 1 at low power allows 
for easy comparison between different tubes. 

In Figure 3, we plot the normalized fraction of transmitted power vs. the 
acceleration gradient.  As one can easily see, a larger fraction of the transmitted power 
is absorbed in the non-coated structure than the coated structure at power levels above 
multipactor threshold.  In other words, the fraction of power absorbed by multipactor, 

incmp PP , is less for the case of the coated structure than the non-coated structure. 
However, while the amount of absorbed power is less for the coated structure, it is still 
a substantial fraction of the incident power, approximately 30% at high power.  As 
stated above, the multipactor threshold (the first knee in the data near 1 MV/m) occurs 
because the impact energy of the electrons is equal to eVe 601 ≈  (Fig. 3b) for 
alumina.  The second knee in the data, near 3 MV/m, corresponds to an impact energy 
of 1.5 keV (Fig. 3a) and is believed to correspond to the second cross-over energy of 
the coated structure or  keVe 5.12 ≈ . 
 

Magnetic Field 

In this section we discuss the affect of an axial magnetic field on the multipactor-
induced power absorption.  Measurements of the transmitted power were made of 
magnetic field strengths of approximately 0, 75, 150, 225, and 300 Gauss. Since the 
effect of the solenoid was not very strong we only show the transmission for the case 
of 150 Gauss for clarity (Fig. 4a).  As can be seen, a solenoidal magnetic field did not 
have a dramatic effect and may have even caused a slight increase in power absorbed 
by multipactor in the central region where the incident power is between 100 and 1000 
kW. 
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FIGURE 4. Transmitted power as a function of incident power (a) with and without a magnetic field.  
(Circles = solenoid off; Squares=solenoid on and B=150 Gauss.); (b) for different materials  

MgxCa1-xTiO3 

In this section we compare the level of power transmitted power absorption in the 
MCT-20 dielectric structure with that of the standard non-coated alumina structure.  
Since multipactor is a secondary electron emission (SEE) avalanche process, and 
alumina is known to have a relatively high value for the SEE coefficient, it is 
reasonable to suppose that other materials, with lower SEE coefficients, may lose less 
power to multipactor.  Although the value of this coefficient for MCT is unknown to 
us, we decided to study this since it is a readily available high-quality commercial 
microwave ceramic.   

In Figure 4b, we once again plot the normalized fraction of transmitted power vs. 
the acceleration gradient.   The power absorbed by multipactor for the MCT-based and 
alumina-based DLA structures are shown on the same plot in Figure 4b.  From this, 
one can see that there is significantly less multipactor-induced power loss in the MCT 
structure than the alumina, thus implying that the materials have very different SEE 
coefficients.  This shows that it may be possible to abate the multipactor effects by a 
judicious choice of materials. 

CONCLUSIONS 

Multipactor in DLA structures was studied for 4 different cases.  Compared to the 
standard, a non-coated alumina DLA structure, the following results were obtained.  
(1) The 20-nm thick TiN coating showed a steep reduction in the multipactor-induced 
power absorption compared to the standard.  (2) The solenoidal magnetic field had 
only a minor effect on the absorption. (3) The MCT-based DLA structures showed 
substantially less power absorption than the standard.  In other words, while the 
solenoidal magnetic field did not have a large effect, the TiN coating and the different 
material (MCT) appear to be promising candidates for suppressing multipactor.  In the 
future we plan to continue pursuing methods to further suppress the multipactor. 
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